由于SQuAD2.0榜单一直在更新,所以top3模型也在更新。
top1: BERT + DAE + AoA
- AoA: attention over attention [1]
- DAE: DA Enhanced
- Data Augmentation
- Domain Adaptation
https://www.infoq.cn/article/M7NpCAAMrPzRo-RViOKs
https://zhuanlan.zhihu.com/p/27361305
[1] Cui Y, Chen Z, Wei S, et al. Attention-over-attention neural networks for reading comprehension[J]. arXiv preprint arXiv:1607.04423, 2016.
top2: BERT + ConvLSTM + MTL + Verifier
- MTL: 多任务学习
预测一个问题是否可答预测该问题在篇章中的答案
- Verifier: 验证器 [1]
- convLSTM [2]
https://msd.misuland.com/pd/12136984602514128
https://blog.csdn.net/maka_uir/article/details/83650978
[1] Hu M, Peng Y, Huang Z, et al. Read+ verify: Machine reading comprehension with unanswerable questions[J]. arXiv preprint arXiv:1808.05759, 2018.
[2] Shi X , Chen Z , Wang H , et al. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting[J]. 2015.
top3: BERT + N-Gram Masking + Synthetic Self-Training
- N-Gram Masking: 类似百度的ERNIE模型
- Synthetic Self-Training: BERT官方PPT
(这个方法全部在预训练上做改进,没有对bert上层模型做什么改进)
Unclear if adding things on top of BERT really helps by very much.
https://zhuanlan.zhihu.com/p/63126803
https://nlp.stanford.edu/seminar/details/jdevlin.pdf
其他
http://web.stanford.edu/class/cs224n/posters/15845024.pdf
[1] Ensemble BERT with Data Augmentation and Linguistic Knowledge on SQuAD2.0